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Abstract—Classification problems solved with deep neural
networks (DNNs) typically rely on a closed world paradigm, and
optimize over a single objective (e.g., minimization of the cross-
entropy loss). This setup dismisses all kinds of supporting signals
that can be used to reinforce the existence or absence of particular
patterns. The increasing need for models that are interpretable
by design makes the inclusion of said contextual signals a crucial
necessity. To this end, we introduce the notion of Self-Supervised
Autogenous Learning (SSAL). A SSAL objective is realized
through one or more additional targets that are derived from
the original supervised classification task, following architectural
principles found in multi-task learning. SSAL branches impose
low-level priors into the optimization process (e.g., grouping). The
ability of using SSAL branches during inference, allow models
to converge faster, focusing on a richer set of class-relevant
features. We equip state-of-the-art DNNs with SSAL objectives
and report consistent improvements for all of them on CIFAR100
and Imagenet. We show that SSAL models outperform similar
state-of-the-art methods focused on contextual loss functions,
auxiliary branches and hierarchical priors.

I. INTRODUCTION

Typical machine learning classification models are isolated
in nature i.e., they are defined, and operate under a closed
world paradigm [[L] where all possible inputs belong to one out
of multiple but finite pre-defined classes. This simplification
goes against emerging needs for more interpretable models [2],
[3]] potentially harming performance, as humans naturally rely
on external, complementary knowledge to find corroborating
or conflicting evidence for a particular decision. Our brains
process information in a non-linear fashion, aggregating het-
erogeneous stimuli that converge to a unified interpretation
or action. Closed world models are thereby semantically
disconnected from the patterns we may deem reasonable,
making the quest for explanations an ill-posed endeavor.
The field of adversarial perturbations is a good example of
this semantic gap for explanability [4]. Despite having input
samples that preserve all the perceptually relevant information,
adversarially perturbed samples can be misclassified with high
probability. The effectiveness of adversarial attacks provides
a strong body of evidence that patterns extracted by neural
networks are effective but fundamentally different from the
ones we are able to understand.

Is there a way to embed context signals into the training
process of a neural network without resorting to additional
ground-truth? Contextual information can be certainly col-
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Fig. 1.
representation h, a supervised goal f and an auxiliary branch g are used for
training and prediction. Training objective for g is derived from the original
labels used for f following a mutually exclusive grouping.

Overview of SSAL models. Starting from a common feature

lected alongside class labels, but what exactly should that
context be, is non-trivial to define, and costly to gather. In
this work, we propose the use of auxiliary classifiers to solve
a surrogate objective that is still closely related to the original
task. Intuitively, we design the auxiliary task based on a
simple characteristic of independent classification problems:
if a model can classify a set of disjoint fine-grained classes, it
should also be able to classify an arbitrary grouping of those
classes. The architecture of a traditional model can be hence
modified by adding a symbiotic auxiliary classifier that shares
a common feature representation, but optimizes the grouping
objective instead (Figure [I). For prediction, a combination of
both outputs is possible through an element-wise (Hadamard)
product or via a learned linear combination.

We describe the auxiliary task as “autogeonous” as it is self-
supervised i.e., it does not rely on additional annotations, and it
is derived from a source within the dataset, namely the original
labels. We refer to the use of auxiliary classifiers using such
a surrogate objective as Self-Supervised Autogenous Learning
(SSAL). The close relationship between a SSAL task and the
main task allows the main model to benefit from auxiliary
classifiers both during training and inference.

The benefits of SSAL are two-fold: it acts as regularizer
for the original architecture, and the contextual nature of the
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surrogate objective provides supporting evidence that aligns
with human expectations. Furthermore, we show through a
set of comprehensive experiments on CIFAR100 [S]], TinyIm-
agenet [6], and Imagenet [7], that SSAL classifiers consistently
yield superior accuracy even after controlling for model size.

II. RELATED WORK

Early Work: The notion of auxiliary classifiers for neural
networks can be tracked down back to the early days of
machine learning. In 1990, Abu et al. [8] proposed the use
of “hints” i.e., additional knowledge about an objective for
neural networks. These hints were represented as an additional
gradient term for a Multi-Layer Perceptron trained via back-
propagation [9]. They concluded that the use of hints could
allow networks to converge faster as the set of potential
solutions was constrained further.

Multi-Task Learning: This idea was later expanded to what
is currently known as Multi-Task Learning (MTL) [10]. In this
scenario, a network is trained jointly on multiple tasks that are
not necessarily aligned but still share some commonalities, and
therefore can benefit from a joint representation. However, we
are not aware of any metric that quantifies how related two
tasks are. Furthermore, the result of MTL is a model that can
solve two problems but the heterogeneity of the domains often
precludes the possibility of a joint prediction. Although recent
advances on MTL have demonstrated that jointly learning
disparate tasks does not harm performance [[11]], measuring the
net benefit for all tasks still depends on a perceived ad-hoc
similarity between them. The symbiotic interaction between
the two objectives is thereby obscured, making it difficult
to establish if one or both tasks benefit from one another
(i.e., if the relation is mutualistic, commensalistic or parasitic).
Some surprising and rather unexpected relationships between
tasks have been reported in the literature, showing that the
degree of relatedness between tasks is not trivial to assess.
For example Lee et al. [12] showed how a video classifier
trained on finding the right order of a clip of shuffled frames
was advantageous for fine-tuning on action recognition, image
classification and object detection tasks. Similarly, Vondrick
et al. [13]] also found that an effective object tracker can be
obtained by training on a frame-colorization task. In fact, a
recent study of the relationships between a plethora of visual
tasks explicitly highlights the non-triviality of the relationships
between some of them [14]].

Hierarchical Priors: One prominent use of auxiliary clas-
sifiers, beyond the scope of MTL, is representing hierarchical
knowledge. As the categories of classification problems are
often semantically organized this way (e.g., objects, places,
animals, species, breeds), some work has focused on the ben-
efits of encoding said priors (probabilistic and deterministic).
The hierarchical relations can be known a-priori and used
for adjusting a prediction by modeling relations of exclusion
or subsumption [15]. Alternatively, hierarchical relationships
can be learned alongside the model to compensate for classes
with a small number of samples [[16] or a posteriori where
labels for a “student” model are represented by the ones

learned previously by a “teacher” classifier [[17]]. Our approach
focuses on relationships that can be directly extracted from the
available data, including the semantic information contained
by the labels. This implies that the relationships are innate (i.e.,
not learned), thereby not prone to limitations in the models or
training schemes.

Regularizing Branches: Another well-known purpose of
auxiliary classifiers has been the stabilization of gradient flow
for very deep neural networks. Most prominently, auxiliary
classifiers were used for training different iterations of the
Inception architecture [18]], [19]. Here, auxiliary networks
were small parallel branches that used the same training
objective as the main network. These branches were only
used during training and the reported benefits include faster
convergence, more stable gradients and regularization. More
recently, models constructed via Neural Architecture Search
also made use of auxiliary classifiers in a similar fashion [20].
All of these examples use auxiliary classifiers exclusively for
training, resort to the exact same loss function, and are not
taken into account for prediction.

Heterogeneous Surrogate Constraint: Instead of one aux-
iliary branch with the same classification objective, benefits
have been reported where small binary classifiers are at-
tached at each layer [21l]. These binary branches optimize
an objective that measures whether features at each layer
are relevant for the main prediction i.e., they yielded a true
positive or a false negative prediction. This idea has been
recently expanded by dynamically attaching branches with a
similar classification objective that are trained based on the
output distribution of the main classifier [22]]. Alternatively,
a reconstruction objective imposed to the original supervised
cost (instead of the feature relevance score) was shown to
improve classification as well [23]. A modern variation of
this idea proposes the use of auxiliary classifiers that process
corrupted samples that are later used to adjust the weights
of the main classifier [24]. Novel work has also explored
the benefits of explicitly modeling information about negative
classes into an otherwise classic classification problem [25].
Our work also relies on a different auxiliary objective which
requires no extra labels. However, we use the notion of
grouping which preserves the information of the original labels
(the class) better than a notion of feature relevance, negative
classes or input reconstruction. This way, the alignment of the
classification objective and the SSAL branch provides outputs
that are explicit and directly interpretable.

Groups as Auxiliary Prior: the idea of joining classes
together has been exploited to improve upon a classification
objective. By grouping classes that fall under a more general
semantic term (e.g., “cat” and “dog” are both “animals”),
a data-augmentation scheme can easily mine additional data
samples that relate to the term subsuming the included labels
(the super-term) using a search engine [26]. Both the crawled
data and the original dataset are passed through a network
with two corresponding branches and trained jointly. Note that
data for the “auxiliary” task (the branch for super-classes) is
disjoint to the one used for the fine-grained task. Moreover,



there is no explicit correspondence between the classification
of the super-class and the original class. A different approach
starts by assigning the original labels to visually similar groups
and training a dedicated feature extractor for each one. At
the same time, a soft-gating mechanism is trained to decide
which specialized feature extractors should be used, to finally
combine their features into one prediction [27]. In this case,
there are no auxiliary objectives (grouping is a priori) and
there is only one loss with a single prediction per sample.

Instead of a gating mechanism, HD-CNNs [28] utilize a
coarse classifier to control a set of specialized branches. Due
to the conditional re-routing of samples based on the coarse
classifier or the soft-gating, training these models needs to
be adaptive and multi-step, the risk of overfitting increases
(specialized networks rely on fewer samples), and the com-
putational cost goes up considerably as more fine-grained
classifiers are used.

In contrast, we opt for a much simpler setup that is
not affected by the number of coarse groups (in terms of
computation), beyond the dimensions of the output layer.
Our proposed network can be trained jointly and end-to-end
using standard optimization algorithms, with no conditional
re-routing or special regularization mechanisms.

III. METHODS

In this section, we analyze the algorithmic components
from SSAL and how they integrate into a traditional clas-
sification problem for training and prediction. There are four
main components to discuss: grouping criterion, architectural
design, training objectives and joint prediction. For each of
these components, we introduce emergent hyper-parameters
that need to be considered during evaluation.

A. Grouping Criterion

We propose that the autogenous auxiliary objective be
based on a grouping of the original classes. Modeling groups
explicitly allows a classifier to learn the property of sub-
sumption; a proven useful mean to generate explanations
in formal verification systems [29]. To this end, we use
a clustering algorithm based on similar principles than the
one used by Yan et al. [28]] but imposing a constrain that
ensures balanced clusters. Concretely, given a set of classes
Ve ={y1,¥2, ...y} we define V), as a partition of ). into k
subsets. The grouping starts by constructing a distance matrix
D., based on the confusion matrix from a pre-trained model:
Given a normalized confusion matrix F' with the diagonal set
to zero, the distance matrix D, is constructed by subtracting
1 from it and then making it symmetric by averaging the off-
diagonals (Equation [2).

D=1-F (1)
D, = (D + D7) )

Each cluster is initialized with one of the k labels with the
highest average distance to all other labels. The next label in

Y. to be assigned will be the one with the smallest distance
to a cluster currently holding less than ¢/k elements. In case
of a tied metric w.r.t. a cluster, a random one among those is
used for the assignment. Note that the distance matrix D, can
be turned into a similarity measure by omitting the inversion
of F i.e., skipping Equation [}

The output of this algorithm is a mapping v : V. — Vi
assigning a single group label to each of the original ground-
truth labels. This way, each sample in a labeled dataset is
modeled as a triplet (x;,y;,v(y;)) representing the input
sample, the ground-truth label and the group label it has
been assigned to respectively. A more detailed description of
the clustering algorithm, can be found in Section [A| of the
supplementary material.

There are two hyper-parameters that we consider for group-
ing, namely the number of groups to map to, and the criterion
used for grouping. While the former is expressed by an integer
2 < k < /2, the latter can prioritize either joining or splitting
visually similar ground-truth labels (by controlling how D is
computed).

B. SSAL Architectural Design

The proposed model follows the structure of a hard parame-
ter sharing architecture for MTL with three main components,
as shown in Figure [I| First, an initial, shared branch A is in
charge of extracting low-level features. Next, these common
features are fed into two branches f and ¢ with different
classification objectives: one with the original ground-truth
classification objective, while the second branch optimizes
over the group labels. Given an input sample, the ensemble
model will output a prediction for the original classification
target f(z) and a prediction for the auxiliary task based on
grouping g(z).

In practice, these architectures are realized by taking a
traditional classifier like Resnet50 [30], and attaching an
auxiliary classifier (with a group objective) at some point in-
between the layers of the original model. The specific layer
disposition for both auxiliary and original models depends on
the experiment but in essence, a mixture of convolutional and
pooling layers are used. A more detailed specification of all
networks used in this work can be found in Section [B] of the
supplementary material.

Under this last perspective, an important hyper-parameter of
the architecture is the point at which the auxiliary classifier at-
taches to the original model. Having a junction in earlier layers
allows both branches to work with generic, lower-level features
but leaves little room for those features to be regularized by the
updates from both branches. Another possible hyper-parameter
is the number of auxiliary classifiers that can be attached. In
that case, we refer to a set of (possibly different) groupings
1,72, - .. based on the ground-truth labels in ). for which a
dedicated auxiliary branch g, go, ... is used.

C. SSAL Training

Training relies on traditional end-to-end backpropagation
using mini-batch SGD. Both branches f and g are trained



jointly, from scratch, and their individual errors are measured
using cross-entropy. Note that there is no unified prediction at
this point and the losses for each branch are only added to-
gether to force an single update of the entire parameter space,
including the common initial feature extractor h. The sum is
controlled by weights A\; and Ay as shown in Equation

L=\ L+ AL, 3)

where L£; and L, are the cross-entropy losses for f and g
respectively.

D. SSAL Prediction

One of the main novelties of this work is the use of the
auxiliary classifier for prediction. To this end, we consider
two main alternatives for calculating a joint prediction.

Joint Probability: the final prediction is represented as the
joint probability of the original prediction and the auxiliary
classifier s.t. P(ylz) = softmax(fi(x) - gy@)(x)), where f;
is the i-th output dimension of f(z), g, (z) is the output
dimension of the auxiliary branch associated with the original
label at ¢ and - represents a scalar product. When more than
one auxiliary classifier is used, the output of all auxiliary
branches g; is raised to a power 1 € (0, 1].

Learned Linear Combination: Predictions from f(z) and
g(x) are concatenated and then used to train a linear classifier
with the same number of outputs as there are labels in the
original ground-truth. Both f and ¢ are assumed to be trained
already, and the linear classifier is hence trained separately.

We also consider a baseline where only the prediction of
f(z) is evaluated. This way, we can establish the influence
that jointly training the auxiliary classifier has had in the
performance of the branch with the original classification
problem. In other words, this baseline evaluation measures the
inductive bias of the auxiliary classifier.

IV. EXPERIMENTS

In this section we describe the datasets, hyper-parameters,
baselines and performance experiments to support and quan-
tify the benefits of SSAL models.

A. Datasets

We conduct experiments on three different image classifi-
cation datasets with varying degrees of complexity:

CIFAR100 [5]: extension of CIFAR10 where 60000 color
images of size 32x32 belong to 100 different classes of fine-
grained objects or animals. The training and test set contain
50000 and 10000 images respectively.

TinyImagenet [6]: 110000 color images of size 64x64 split
into 200 natural categories e.g., animals, food, furniture. They
are divided into 100000 samples for training and 10000 for
validation. The official testing set does not provide labels,
hence we take a small portion of the training set for develop-
ment and report results on the validation set.

Imagenet [7]: One of the largest image -classification
datasets available. Image size is variable but samples are
commonly downscaled to 300x300 pixels. They comprise over

1.2M images across 1000 categories. Similarly to Tinylma-
genet, we use the 50 000 validation samples for testing and in
turn, take a small portion of the training set for any validation
that is required.

B. SSAL Hyper-Parameters

As mentioned in Section SSAL models introduce a
variety of hyper-parameters requiring additional consideration.

Layer Architecture: as mentioned earlier, multiple ar-
chitectures are used depending on the dataset and the
objective of the experiment. We base our evaluations
and SSAL models on five high-performance architec-
tures: Resnet18 [30], Resnet50 [30], Wide-Residual-Networks
(WRNs) [31], Squeeze and Excitation Nets (SENets) [32], and
DenseNets [33]]. For the architecture of auxiliary branches
we use a combination of blocks comprising convolutional,
pooling, batch-normalization and inception-like layers. When
a hyper-parameter search on these architectural elements is
required, we use a small portion of the training set for
validation, before evaluating on the corresponding test set.

Grouping Criterion and Number of Groups: we train
SSAL models based on Resnetl8 for CIFAR100 and TinyIm-
agenet. The auxiliary classifier consists of four convolutional
layers with batch-normalization and ReLU activation, a global
average pooling, two fully connected layers and a final linear
combination with softmax normalization. The size and number
of convolutional filters, and the number of fully connected
neurons were determined via hyper-parameter search. See
Section |C| of the supplementary material for further details
about said parameters.

We use a single auxiliary classifier (a.k.a. SSAL branch)
with either 2, 4, 10 or 20 groups, and a grouping criterion
that either splits or joins visually similar classes following the
computation outlined in Section The model prediction
is done by computing the joint probability as proposed in
Section The auxiliary classifier attaches to the main
network between the first max-pooling and the first residual
block.

Results in Figure [2] show a constant improvement of the
combined classification error as the number of groups in-
creases. Although grouping visually similar classes yields an
initial small advantage compared to the “splitting” criterion,
this tendency inverts when the number of groups reaches 10
and 20. The pattern, albeit some marginal fluctuations, is
preserved for both datasets.

This first experiment suggests that having more groups is
beneficial and that either splitting or joining visually similar
classes contribute to a better performance at a similar rate.

Position of the Auxiliary Classifier: we use a similar setup
based on Resnet50 for CIFAR100 and vary the point at which
the auxiliary classifier is attached. Each of the four residual
blocks in the original network is considered an atomic unit.
We evaluate the effects of attaching the auxiliary classifier
after each one of said blocks. The architecture of the auxiliary
classifiers remain the same, except for the number of channels
in the first layer which increases as the point of attachment
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lies deeper in the original network. They all optimize over
the same 20 groups joining visually similar classes, and the
final prediction is done via the joint probability. The same
experiment is conducted using two different classifiers: a Wide
Residual Network (WRN 28-10) and a DenseNet (DenseNet-
BC 100-12). Seven points of attachment at different depths are
selected for each network. These points include paths that lie
before, after and in-between macro-blocks (see Figure E[)

Results in Figure [3] show that the position of the auxiliary
classifier w.r.t. the main model has a tendency to perform
best when the auxiliary classifier is attached at deeper layers
in the original network. This behaviour corresponds with the
performance of the SSAL branch itself, which shows higher
performance when it has been attached at a deeper stage within
the architecture.

Number of Auxiliary Classifiers: to evaluate the influence
of attaching more than one auxiliary classifier to the main
model, we train Resnetl8 on CIFAR100 while either one
or two auxiliary classifiers g, go are attached. The auxiliary
classifiers are both composed of two convolutional layers with
batch-normalization and ReLU followed by an inception-like
layer, global average pooling, and a linear output layer with
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Fig. 4. Positions where SSAL branches are being attached to the main network
(red circles). Only one auxiliary branch is evaluated at a time.

softmax normalization. The auxiliary branch g, is placed after
the first residual block and optimizes over 20 visually similar
groups. The go counterpart is placed after the second residual
block, and optimizes over 50 visually similar groups. Final
prediction is based on the joint probability, and an equal
normalization power 7 = 1 is used.

Two similar experiments are conducted using Resnet50
and WRN. For these two variants, three auxiliary branches
are simultaneously attached. Grouping is based on visual
similarity and they optimize over an increasing number of
groups: 20, 30 and 50 groups. The normalization power is
the same for all branches. Results are summarized in Table [

Increasing the number of SSAL branches does have a
positive impact on performance, as long as the normalization
power 7 decreases when the number of SSAL branches goes
up. Intuitively, the role of SSAL branches is one of verification
and support rather than a predominant signal, and thereby

llgill m  Test Acc. (%)  Parameters

Resnet18 0 - 75.67 11.23M
1 1.0 76.62 11.92M

2 1.0 78.23 12.83M

Resnet50 0 - 79.13 23.7TM
1 1.0 79.70 25.07M

3 1.0 80.36 28.89M

3 0.3 80.69 28.89M

WRN 28-10 0 - 80.19 36.56M
1 1.0 80.96 38.19M

3 1.0 80.68 43.25M

3 0.4 81.08 43.25M

TABLE I

CLASSIFICATION ACCURACY FOR MODELS WITH [|g;|| SSAL BRANCHES
ON CIFAR100. USING MORE BRANCHES, TOGETHER WITH
REGULARIZATION, IMPROVES PERFORMANCE. HOWEVER THE
COMPUTATIONAL FOOTPRINT ALSO INCREASES.



outputs from these branches should be weighted down in
scenarios where branches outnumber the original classification
network. For Resnet18, adding two SSAL branches yields an
accuracy of 78.2%, a 2.6 pp. improvement over the baseline.

C. Alternative Baselines

The use of auxiliary branches inevitably adds more raw
capacity to the overall network by virtue of the extra trainable
parameters. We test whether the consistent boost in perfor-
mance can be simply explained by the additional weights
(Occam’s razor) or if the introduction of the SSAL objective
has merit on its own.

To this end, we train modified versions of Resnet18 on Tiny-
Imagenet that add more weights in various ways, matching or
surpassing the number of parameters of a SSAL model. We
also compare models with the same architectural design of
SSAL models but training without the SSAL objective:

o WideResnet18: has 50% more filters across all convolu-
tional layers.

o DeepResnet18: adds four convolutional layers of 256 fil-
ters each with batch-normalization and ReL.U activations
before the first residual block.

« DWResnet18: similar to DeepResnet18 but doubling the
number of filters of the additional convolutional layers.

o GapCatNoSSAL: based on a SSAL model but without
the SSAL loss. The output of the SSAL branch is con-
catenated with the GAP activation of the main classifier.

o CatFCNoSSAL: based on the SSAL architecture but
without the SSAL objective. The outputs of the SSAL
branch and the original network are concatenated and
passed through a fully-connected layer with 2048 neu-
rons. The result is then passed through a linear combina-
tion for the final prediction.

o LinearComb: as described in Section [II-D] we start
with a fully trained SSAL model, but instead of issuing
predictions through a joint probability, both the auxiliary
output and the prediction from the original classifier are
concatenated together and used to train a separate linear
classifier.

o SSAL: classifier ensemble proposed in this work. For the
variant with one auxiliary classifier, the SSAL branch is
placed after the first residual block (¢2 in Figure ) while
the model with three SSAL branches uses attachment
points corresponding to g1, g2, and g3.

Networks are trained for 20 epochs with a triangular learn-
ing rate peaking at epoch 8. Each experiment is repeated
three times to account for initialization effects. Results are
summarized in Table [

It is clear that adding more capacity to Resnetl8 improves
accuracy. Capacity in the form of deeper layers shows better
results than using wider layers, and a combination of both
yields an overall improvement of up to 3.8 percentage points.
Using the same architectural disposition of a SSAL model but
without the SSAL objective (*NoSSAL), worsen performance
w.r.t. the baseline, discarding this setup as the reason for
improvements. Overall, the use of SSAL objectives remains
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Fig. 5. Accuracy of a SSAL model based on Resnetl8 (red) is not only
higher, but also reached with less training than the same model without the
SSAL objective (purple) or even the original Resnet18 (green).

the most effective use of the extra weights and layers with
an improvement over the baseline of 5.9 to 12.7 percentage
points (8.9 points better than the best baseline, while keeping
a lower parameter count).

Training Convergence: we measure the rate of convergence
when training a SSAL model on CIFARI100, verifying that
the SSAL objective has an aligned inductive bias which is
not only beneficial for classification but it also requires less
training steps. We train the CatFCNoSSAL baseline for 20,
50 and 100 epochs, and compare it with a fourth run where
the SSAL objective is added to the training procedure (the
model architecture remains identical). Results in Figure [3]
(left) show the validation accuracy of these four systems.
Here we see that training with the SSAL objective drastically
accelerates convergence. Even after 100 epochs, an identical
architecture is still unable to match the performance of its
SSAL counterpart. Effects of this accelerated convergence
is also evident when comparing the training accuracy of
a SSAL-based pipeline (joint prediction) against a baseline
implementation with no auxiliary branches (Figure [3] right).

D. Improving Classification

Based on the analysis of hyper-parameters for SSAL mod-
els, we show that high accuracy is consistently attainable

Val. Acc. (%) Diff (pp.) Parameters
Resnet18 39.9 £ 0.3 0.0 11.2M
WideResnet18 423 +£0.3 2.4 25.3M
DeepResnet18 43.1 £ 04 32 13.3M
DWResnet18 43.7 £ 0.1 3.8 19.0M
GapCatNoSSAL 40.2 £ 0.3 0.3 15.6M
CatFCNoSSAL 353+ 0.8 -4.6 13.6M
LinearComb 44.1 £+ 0.1 4.2 12.8M
SSAL x1 45.8 + 0.2 5.9 12.6M
SSAL x3 50.0 + 0.4 10.1 15.6M

TABLE 1T

BASELINES FOR SSAL MODELS ON TINYIMAGENET. MODELS THAT HAVE
A DEEPER ARCHITECTURE, WIDER LAYERS, OR LACK THE SSAL
OBJECTIVE FAIL TO REACH THE LEVEL OF ACCURACY OF SSAL MODELS.



across a variety of well-known, thoroughly optimized archi-
tectures.

CIFAR100: We train SSAL models based on Resnet50,
WRN, SENet and DenseNet on CIFAR100. For each of
these original architectures, we attach three SSAL branches
with visually similar groups of 20, 33, and 50 groups. To
guarantee uniformity on the evaluation conditions, we have re-
implemented all models and trained them from scratch so that
the only difference between the original performance and the
SSAL variant is the proposed surrogate objective. Additionally,
we include baselines from their original source (org), our
own re-implementation (ours), and the LinearComb setup from
Section[[V=C|(+LC). For SSAL models, we report the accuracy
of the original classifier i.e., using the SSAL branch during
training but not for prediction (+TR), and the full SSAL
prediction using the joint probability (+JP). For further details
about the architecture of the SSAL branches and the training
setup, please refer to Section [C|in the supplementary material.
Table [[II] summarizes the results.

These experiments show that training with the auxiliary
classifier consistently yields better performance. The inductive
bias of SSAL branches guides the classifier even when the aux-
iliary output is not used for prediction. Performance improves
even further when SSAL models issue a joint prediction. Note
that for WRN and DenseNet, the SSAL version outperforms
the original model (org), notwithstanding the weaker baseline
it starts from (ours).

Imagenet: To test the effects of SSAL branches on large
scale problems, we train a Resnet50 on Imagenet (ours),
and compare it with a corresponding SSAL model with
three auxiliary branches. As in the previous experiment, they
use visually similar classes with 200, 334, and 500 groups,
and report values for training with SSAL only (+TR), joint
prediction (+JP) and using the LinearComb setup from
(+LC). We also evaluate on a GapCatNoSSAL baseline (GC)
from [V-Q which has a similar architecture but no SSAL
objective. Table |117| shows how, once again, a SSAL model
is able to outperform the original baseline by almost 1.5 p.p..

Finally, in Table we compare our results with recently
proposed state-of-the-art methods described in Section [l In
particular, we show that SSAL models outperform alternative
methods conveying contextual information in the loss function,
use other kind of auxiliary classifiers or rely on different
hierarchical priors for training.

Val. Accuracy Parameters
org ours +TR +JP +LC org SSAL
Resnet50 - 7894 79.67 80.61 80.23 23.8M 28.9M
SE-WRN 16-8 80.86 79.02 79.02 80.20 80.03 11.IM 14.9M
WRN 28-10 80.75 80.08 80.65 80.97 80.68 36.6M 38.2M
DenseNet 190-40  82.82 81.06 81.85 83.24 83.10 26.1M 38.3M
TABLE TIT

CLASSIFICATION ACCURACY FOR MULTIPLE HIGH-PERFORMANCE
ARCHITECTURES ON CIFAR100. ADDING THE SSAL OBJECTIVE
CONSISTENTLY YIELDS HIGHER PERFORMANCE.

slide rule
org SSAL

preeirh
|slide rule  |pill bottle [ruler slide rule [slide rule
nipple scale ruler

remote slide rule

ruler

slide rule

o
9k g

|dial phone |screw ATM hoster
barbell gas pump |revolver
cleaver  |pay-phone
dumbell

tool kit

Fig. 6. CAM w.r.t. each auxiliary branch g; of the SSAL model. g; denotes
the final classification output of the SSAL model, and org is the CAM of
a normal Resnet50. Labels within predicted SSAL groups are shown below
each branch.

E. Contextual Validation

We show that predictions of SSAL models are more inter-
pretable than regular DNNs thanks to the grouping objective
of their auxiliary branches. The use of heatmaps has been
controversial as a mean to interpret a model’s output because
it can only point to the area of importance while leaving out
information about the underlying features that elicit a high
response [3l]. Labels within each SSAL group can be used
to identify which low-level features are responsible for the
prediction.

Figure [6] shows the Class Activation Mapping [34] of
two examples: a false-, and a true-positive. For the former,
predicted SSAL groups contain labels with metallic parts,
and box-like shapes which correspond to areas with a strong
activation. For the slide rule, class labels in auxiliary groups
like “pill bottle” or “nipple” (mouthpiece of a baby bottle)
often depict the uniform markings found in rulers; a strong
indication that these are precisely the salient features that
guided this particular prediction.

In contrast, regular classifiers provide less nuanced insights
where multiple interpretations are possible. Examples in Fig-
ure[6]leave ample room for interpretation when predicting “dial
phone” or even the true positive for “slide rule” (org). More

ours (org) +TR +JP +LC GC
Top-1 755£01 764+01 769+01 766+02 757=+0.1
Top-5 927+£01 933+£01 93.7+01 934401 92740.1
TABLE TV
ACCURACY FOR SSAL RESNET50 ON IMAGENET. EXPERIMENTS ARE
RUN 3 TIMES.
CIFAR100 Imagenet
HD-CNN [28] 65.64 68.66 (-)*
HydraNets [27] 76.25 73.20 (-)*
COT [25] 79.46 75.60 (-)
DSL [21], [22] 81.95 76.12 (92.93)
DHM [22] 82.80 76.57 (93.24)
Aux. Train [24] 80.84 74.14 (-)*
SSAL (ours) 83.24 77.00 (93.80)
TABLE V

ToOP-1 ACCURACY OF RELATED STATE-OF-THE-ART AND SSAL MODELS.
RESULTS FOR IMAGENET ARE BASED ON RESNET50 EXCEPT THE ONES
MARKED WITH *. TOP-5 SHOWN IN PARENTHESIS, IF AVAILABLE.



examples can be found in the supplementary material.

V. CONCLUSIONS

In this work, we have introduced SSAL: a method for ex-
tending neural network architectures with auxiliary objectives
that are related to the original supervised task. These objectives
express low-level priors (e.g., grouping) which do not require
any additional manual annotation, but are derived from a pre-
existing annotated set i.e., they are autogenous. SSAL models
follow the structure of multi-task learning algorithms, making
a joint prediction based on the outputs from all its branches
possible. We show that the use of SSAL objectives consistently
yields higher classification performance across several state-
of-the-art classifiers like Resnets, DenseNets, SENets and
WRN:Ss for different datasets like CIFAR100, TinyImagenet and
Imagenet. The usefulness of the SSAL objective is validated
through a comparison with several baselines including net-
works with similar architectural structure but no SSAL objec-
tive and networks with a comparable number of parameters.
Finally, we show that SSAL models capture more evidence
for each sample, enabling a more grounded interpretation of
predictions.

Future Work: we are interested in measuring the ef-
fects of different clustering algorithms that can be used as
grouping criterion (e.g., bootstraping or EM-like strategies)
Furthermore, we want to explore other low-level priors beyond
grouping that can be conveyed in a self-supervised fashion.
Finally, we are interested in assessing the benefits of using
SSAL branches for neural-architecture-search algorithms.
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